Drug-Eluting Balloon Leaving Nothing Behind: Attractive Treatment with "Procedure Optimization"

Joo Myung Lee, MD, MPH, PhD

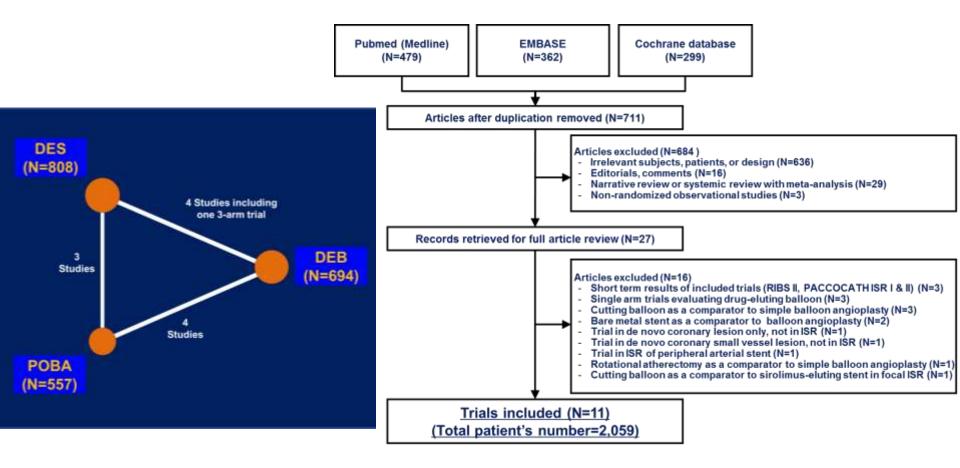
Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea

ISR in the Contemporary DES Era

- The development of DES created a milestone in the field of PCI, by markedly reducing the rates of ISR
- However, ISR occurs even in the newer generation DES era with considerable incidence ranging from 3% to 20% of patients
- ISR is still a major concern of interventionists, because
 - 1. More than half of ISR patients present with acute coronary syndrome
 - 2. ISR, compared to *de novo* lesion, increases rates of future MACE
 - even after successful treatment of ISR

- * ISR, in-stent restenosis
- * DES, drug-eluting stents
- * MACE, major adverse cardiovascular events

B Scheller et al. JACC Intervention 2012 F Alfonso et al. JACC 2014 JM Lee, J Park, HS Kim et al. JACC Intervention 2015


How to Treat ISR? Still in Controversy

Repeat revascularization

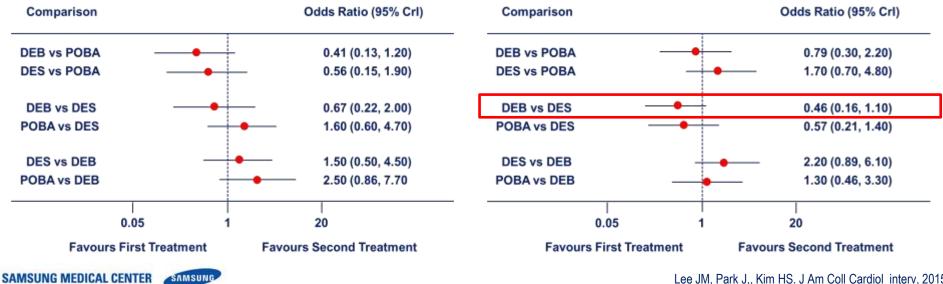
Recommendations	Class ^a	LoE ^b	Ref ^c
Restenosis			- 11
Repeat PCI is recommended, if technically feasible.	1	С	
DES are recommended for the treatment of in-stent restenosis (within BMS or DES).	1	A	501,502,508 511,524
Drug-coated balloons are recommended for the treatment of in-stent restenosis (within BMS or DES).	I.	Α	507-511,524
IVUS and/or OCT should be considered to detect stent-related mechanical problems.	lla	C	

- 2014 ESC/EACTS guideline provide an equivalent recommendation
 DES or DEB for the treatment of ISR (class I, LoE A)
- All references supporting this recommendation are based on trials comparing DEB with "old-fashioned" 1st generation DES
 - Limits the applicability to the contemporary PCI practice
- Optimal treatment strategy for ISR is still under debate.

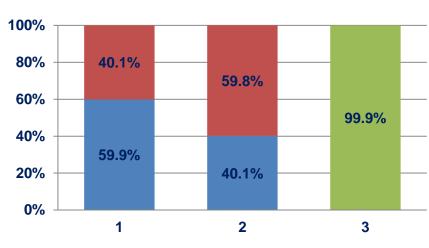
A Bayesian Network Meta-Analysis Compared the Efficacy and Safety of DEB, DES, and POBA

Included Trials - Characteristics

Trial (Maar)		tment and Patients number Type of Device tal patients number 1,862) BMS or DES				Type of Device		DAPT	CAG	
Trial (Year)	DEB (N=672)	DES (N=694)	POBA (N=496)	ISR	DEB	DES	protocol	F/U	Clinical F/U	
ISAR-DESIRE (2005)	N/A	200	100	BMS ISR	N/A	Cypher, Taxus	6M	6M	1Y	
RIBS-II (2008)	N/A	76	74	BMS ISR	N/A	Cypher	9M	9M	4Y	
PEPCAD-II (2009)	66	65	N/A	BMS ISR	Sequent Please	Taxus Liberte	3M in DEB, 6M in DES	6M	1Y	
Habara et al. (2011)	25	N/A	25	DES ISR	Sequent Please	N/A	3M (recomm ended) → 6M (all patient)	6M	6M	
ISAR-DESIRE 3 (2012)	137	131	134	DES ISR	Sequent Please	Taxus Liberte	6M	6-8M	1Y	
PEPCAD-DES (2012)	72	N/A	38	DES ISR	Sequent Please	N/A	6M	6M	6M	
PACCOCATH-ISR I&II Pooled Analysis (2012)	54	N/A	54	96% BMS ISR 4% DES ISR	PACCOCATH	N/A	1 M	6M	5Y	
<u>CRISTAL</u> (2012)	N/A	136	61	58% BMS ISR 42% DES ISR	Sequent Please	Cypher Select	3M	6M	6M	
<u>Habara et al.</u> (2013)	136	N/A	71	58% BMS ISR 42% DES ISR	Sequent Please	N/A	3M	6M	6M	
PEPCAD China ISR (2014)	109	106	N/A	DES ISR	Sequent Please	Taxus Liberte	12M	9M	1Y	
<u>RIBS V</u> (2014)	95	94	N/A	BMS ISR	Sequent Please	Xience Prime	3M for DEB, 1Y for DES	6-9M	1Y	

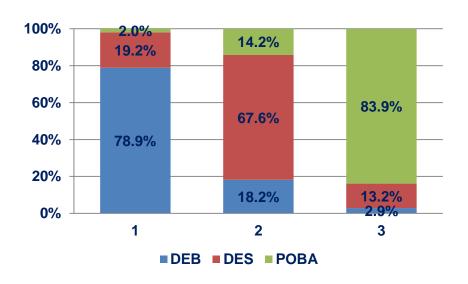

Efficacy and Safety Endpoints

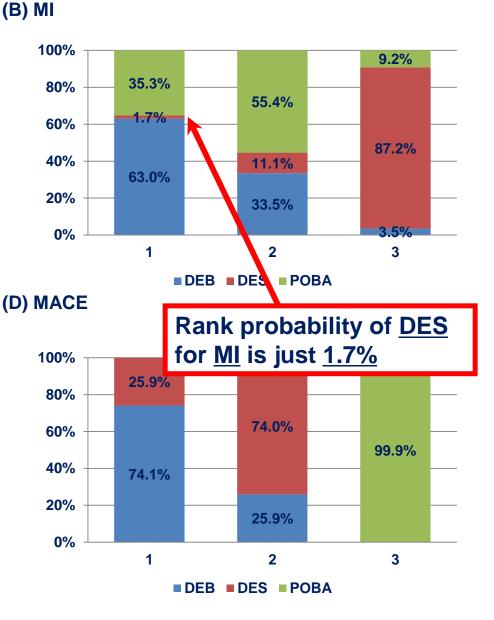
MACE **Target Lesion Revascularization** Comparison Odds Ratio (95% Crl) Comparison Odds Ratio (95% Crl) 0.24 (0.12, 0.39) DEB vs POBA DEB vs POBA 0.22 (0.10, 0.42) DES vs POBA 0.28 (0.14, 0.53) **DES vs POBA** 0.24 (0.11, 0.47) DEB vs DES 0.84 (0.45, 1.50) DEB vs DES 0.92 (0.43, 1.90) POBA vs DES 3.60 (1.90, 7.30) 4.10 (2.10, 9.00) POBA vs DES DES vs DEB 1.20 (0.67, 2.20) 1.10 (0.53, 2.30) DES vs DEB POBA vs DEB 4.20 (2.50, 8.10) 4.50 (2.40, 9.81) POBA vs DEB 0.05 20 0.05 20 Favours First Treatment Favours Second Treatment Favours First Treatment Favours Second Treatment


All-Cause Mortality

SAMSUNG

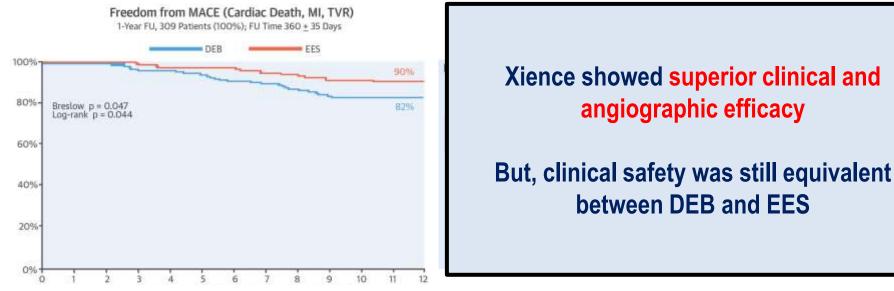
Myocardial Infarction (Any)


Rank Probability for Clinical Outcomes



DEB DES POBA

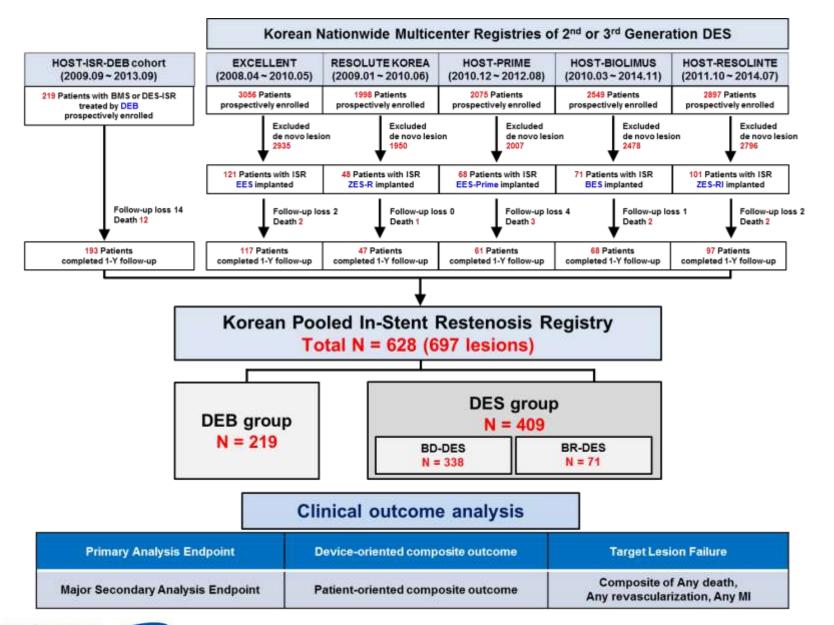
(A) TLR



Summary of Network Meta-analysis Findings

- Our results showed superior efficacy of DEB and DES, compared with POBA, and similar efficacy between DEB and DES.
- However, in terms of safety, DES showed lowest rank probability for the risk of MI.
- DEB showed marginal benefit in the risk of MI, compared with 1st generation DES.

The Most Recent RIBS-IV RCT DEB vs. Xience for DES-ISR


- 1) In patients with high clinical and lesion character ?
 - e.g. ACS presentation, small vessel, long lesion, total occlusion
- 2) In other types of DES as Treatment option ?

e.g. ZES, bioresorbable polymer-coated DES

3) There have been scarce evidence for DES-ISR, except RIBS-IV.

Therefore, further studies with more generalizability are needed.

DEB vs. Newer generation DES

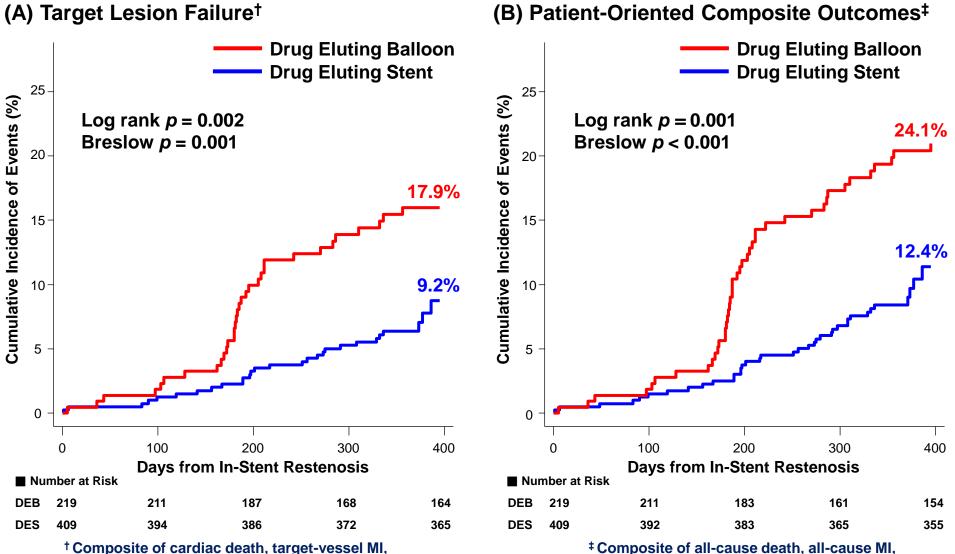
SAMSUNG MEDICAL CENTER SAMSUNG

Lee JM, Lee TM,, Kim HS. IJC 2017

Baseline Clinical Characteristics

Characteristics (non notion)	DEB	DES	P	Standardized Differences	
Characteristics (per patient)	(N = 219)	(N = 409)	Ρ	Before IPW	After IPW
Age, years	66.2 ± 9.9	65.3 ± 10.1	0.272	9.8958	6.1703
Men	140 (63.9%)	288 (70.4%)	0.096	14.2807	-8.0810

Patients had CKD in 28.3%, and LV dysfunction in 15.1% Presented with ACS 55.1%, with AMI 16.9%

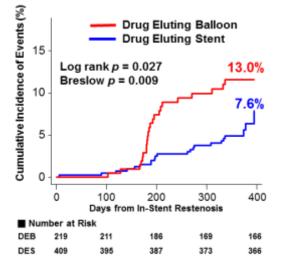

Represent unselected patients including high-risk clinical profiles

Prior congestive heart failure	22 (10.0%)	16 (3.9%)	0.002	25.6742	0.0369	
LV dysfunction (EF <50%)	38 (17.4%)	57 (13.9%)	0.741	-2.8795	6.6088	
Present with ACS	102 (46.6%)	244 (59.7%)	0.001	-26.3819	-0.6797	
Present with AMI	24 (11.0%)	82 (20.0%)	0.004	-26.8141	-12.7701	
Multi-vessel disease	168 (76.7%)	243 (59.4%)	< 0.001	38.1949	-12.0571	

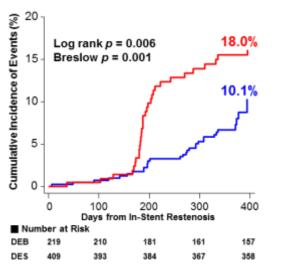
Baseline Angiographic Characteristics

	DEB DES		•	Standardized Differences			
Characteristics (per lesion)	(N = 265)	(N = 432)	Р	Before IPW	After IPW		
ISR in left main artery	16 (6.0%)	30 (6.9%)	0.196	-3.6754	-3.0770		
Left main ISR in 6.6% of total lesions Small vessels in 17.2%, Long lesions in 28.0%, DES-ISR 87.7% Included complex lesions with high risk of adverse outcomes, reflecting the real-world contemporary practice							
BMS	17 (6.4%)	69 (16.0%)					
DES	248 (93.6%)	363 (84.0%)					
Type of inserted stent			N/A	-	-		
Biodurable polymer DES	-	359 (83.1%)					
		()					

Target Lesion Failure Patient-Oriented Composite Outcome



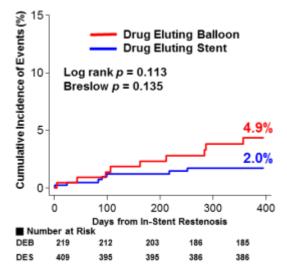
and clinically-driven target lesion revascularization


and any repeat revascularization

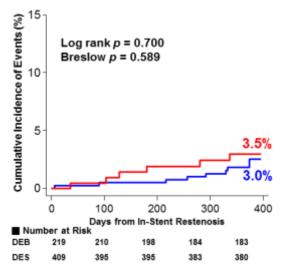
Individual Outcomes: Efficacy

Target Lesion Revascularization

Any Revascularization



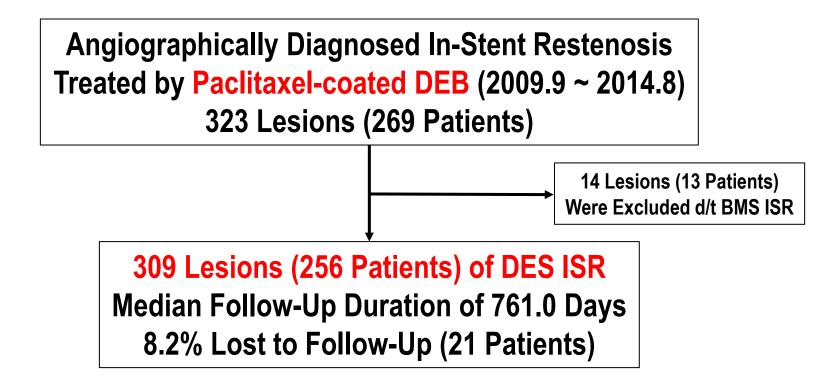
	DEB (N = 219)	DES (N = 409)	•	d HR (95% CI) insertion	<i>P</i> value
Target lesion failure	17.9% (33)	9.2% (30)	⊢	0.22 (0.11 - 0.47)	< 0.001
Any revascularization	18.0% (32)	10.1% (31)	⊢ i	0.23 (0.11 - 0.50)	< 0.001
Clinically-driven TVR	14.0% (25)	8.8% (27)		0.23 (0.10 - 0.54)	< 0.001
Clinically-driven TLR	13.0% (23)	7.6% (23)	←	0.21 (0.09 - 0.49)	< 0.001
			0.1 ors DES	1 2 Favors DEB	


Superior efficacy of newer generation DES over DEB Mainly driven by the lower rates of TLR in DES group

Individual Outcomes: Safety

Cardiac Death

Any Myocardial Infarction



	DEB (N = 219)	DES (N = 409)	IPW adjusted HR (95% CI) of DES insertion	P value
All-cause mortality	7.4% (12)	3.0% (10) 🛏	0.50 (0.18 - 1.39)	0.182
Cardiac death	4.9% (9)	2.0% (8) 🛏	0.49 (0.16 - 1.49)	0.209
Any MI	3.5% (6)	3.0% (9)	▶ ■ 1.89 (0.59 - 6.03)	0.286
Target-vessel MI	3.0% (5)	2.5% (7)	▶ 1 .95 (0.53 - 7.13)	0.313
Definite/probable ST	1.0% (2)	2.3% (6)	► 3.33 (0.55 - 20.4)	0.192
		0.1 Favors DES	1 10 Favors DEB	

Comparable clinical safety between DES and DEB groups But, DES showed numerically 2.5 folds higher rates of definite or probable ST

Lee JM, Lee TM,, Kim HS. IJC 2017

How to Optimize DEB treatment?


- Angiographic follow-up at 6-month visit
 - Not routinely mandated but depended on physician's discretion
- Quantitative coronary analysis (QCA) of index DEB procedures
 - Baseline and final images + Images after lesion preparation (POBA)

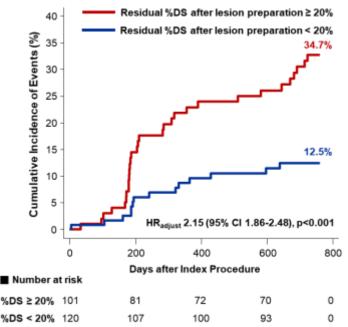
How to Optimize DEB treatment? Independent Factors Predicting TLF after DEB

Results of multivariable Cox regression with stepwise selection

	Hazard Ratio (95% CI)	Р
Procedure-related factors		
Residual %DS after lesion preparation (per 1% \uparrow)	1.021	1.014 – 1.028
DEB-to-stent ratio (per 0.1↑)	0.778	0.608 – 0.994
Total inflation time of DEB (per 1 second↑)	0.993	0.990 – 0.996
Patient-related factors		
Peripheral vascular disease	2.274	1.574 – 3.285
Diabetes mellitus	1.687	1.290 – 2.206
Prior history of myocardial infarction	1.226	1.052 – 1.429
Hypertension	1.184	1.012 – 1.385
Lesion-related factors		
Complex (type B2 or C) lesion	1.737	1.198 – 2.517
Long lesion (\geq 28 mm)	1.272	1.045 – 1.549

Optimal Cut-Off Values for Individual Procedure-related Factors

Optimal residual %DS after lesion preparation : 20% Optimal DEB-to-stent ratio : 0.91 Optimal total inflation time of DEB : 60 sec


Were the best cut-off values to discriminate the occurrence of TLF

SAMSUNG MEDICAL CENTER

SAMSUNG

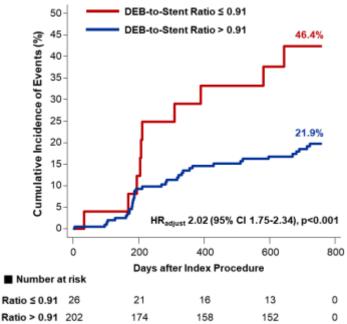
Composite and Individual Clinical Outcomes by Residual %DS after Lesion Preparation

Target Lesion Failure at 2-yr

	Residual lesion pro	%DS after eparation	Multivariable-adjusted	<i>P</i> value	
	≥ 20% (N = 101)	< 20% (N = 120)	Hazard ratio (95% CI)	<i>P</i> value	
Target lesion failure	34.7% (31)	12.5% (14)	2.15 (1.86-2.48)	< 0.001	
Target vessel MI	6.4% (5)	0.0% (0)	12.5 (0.53-293.7)	N/A	
Clinically-driven TVR	31.4% (27)	12.9% (14)	2.44 (1.84-3.22)	< 0.001	
Clinically-driven TLR	30.4% (26)	10.2% (11)	2.62 (2.04-3.38)	< 0.001	

Hazard ratios were calculated with residual %DS < 20% as a reference group * %DS, percent diameter stenosis; TVR/TLR, target vessel/lesion revascularization

Superior efficacy outcomes in group with residual %DS < 20% than with residual %DS ≥ 20%, Mainly driven by the lower rates of TLR


Infers importance of proper lesion preparation until residual %DS < 20%

SAMSUNG MEDICAL CENTER

Composite and Individual Clinical Outcomes by DEB-to-Stent Ratio

Target Lesion Failure at 2-yr

	DEB-to-stent ratio		Multivariable-adjusted		
	≤ 0.91 (N = 26)	> 0.91 (N = 202)	Hazard ratio (95% CI)	P value	
Target lesion failure	46.4% (10)	21.9% (38)	2.02 (1.75-2.34)	< 0.001	
Target vessel MI	4.0% (1)	3.2% (5)	1.52 (0.18-12.8)	0.703	
Clinically-driven TVR	46.4% (10)	19.4% (32)	2.33 (1.95-2.78)	< 0.001	
Clinically-driven TLR	42.2% (9)	18.3% (30)	2.12 (1.76-2.55)	< 0.001	

Hazard ratios were calculated with DEB-to-stent ratio > 0.91 as a reference group * TVR/TLR, target vessel/lesion revascularization

Superior efficacy outcomes in group with DEB-to-stent ratio > 0.91 than with ratio ≤ 0.91, Mainly driven by the lower rates of TLR

Infers importance of sufficient dilation of DEB with DEB-to-stent ratio > 0.91

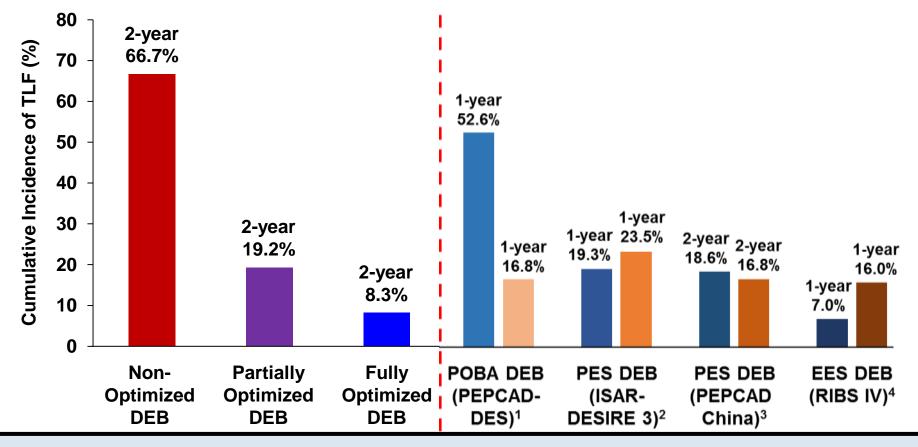
Composite and Individual Clinical Outcomes by Total Inflation Time of DEB

otal Inflation Time ≤ 60 sec 30 otal Inflation Time > 60 sec Cumulative Incidence of Events (%) 25 26.2% 20-15 14.0% 10-5 HR_{adjust} 1.82 (95% CI 1.36-2.45) p<0.001 200 400 800 600 Days after Index Procedure Number at risk 183 161 151 1 Duration $\leq 60s$ Duration > 60s 37 33 31 31 0

SAMSUNG

SAMSUNG MEDICAL CENTER

Target Lesion Failure at 2-yr


$\leq 60 \ \text{sec}$ (N = 216)> 60 \ \text{sec} (N = 37)Hazard ratio (95% Cl) $I = Value$ Target lesion failure $26.2\% (48)$ $14.0\% (4)$ $1.82 (1.36-2.45)$ < 0.001Target vessel MI $3.5\% (6)$ $0.0\% (0)$ $1.11 (0.05-26.5)$ 0.948 Clinically-driven TVR $23.5\% (41)$ $17.4\% (5)$ $1.83 (1.37-2.45)$ < 0.001Clinically-driven TLR $22.5\% (39)$ $11.5\% (3)$ $2.33 (1.87-2.90)$ < 0.001		Total inflation time of DEB		Multivariable-adjusted	<i>P</i> value	
Target vessel MI 3.5% (6) 0.0% (0) 1.11 (0.05-26.5) 0.948 Clinically-driven TVR 23.5% (41) 17.4% (5) 1.83 (1.37-2.45) < 0.001				Hazard ratio (95% CI)	r value	
Clinically-driven TVR 23.5% (41) 17.4% (5) 1.83 (1.37-2.45) < 0.001	Target lesion failure	26.2% (48)	14.0% (4)	1.82 (1.36-2.45)	< 0.001	
	Target vessel MI	3.5% (6)	0.0% (0)	1.11 (0.05-26.5)	0.948	
Clinically-driven TLR 22.5% (39) 11.5% (3) 2.33 (1.87-2.90) < 0.001	Clinically-driven TVR	23.5% (41)	17.4% (5)	1.83 (1.37-2.45)	< 0.001	
	Clinically-driven TLR	22.5% (39)	11.5% (3)	2.33 (1.87-2.90)	< 0.001	

Hazard ratios were calculated with inflation time \leq 60 sec as a reference group * TVR/TLR, target vessel/lesion revascularization

Superior efficacy outcomes in group with total inflation time > 60s than with inflation time ≤ 60s, mainly driven by the lower rates of TLR

Infers importance of prolonged inflation of DEB until total inflation time > 60 seconds

Incidence of Target Lesion Failure by Combined Procedure-related Factors

2-year TLF rate in fully-optimized DEB group was 8.3%, Similar to or even better than 1st or 2nd generation DES groups in previous ISR trials

"Four Major Procedural factors" to Enhance Clinical Outcomes after DEB treatment

- Perfect lesion preparation before DEB treatment: Residual %DS < 20% Makes the lesion easy to be coated with drug
- 2) Balloon-to-stent ratio : beyond at least 0.9

Increases the contact area to maximize drug delivery Also warrants the optimal lesion preparation

3) Total Inflation Time of DEB : beyond at least 60 seconds

Increases the time and chance for drug to be delivered Needs the **ischemic preconditioning before DEB treatment**

4) Rapid delivery of DEB device : delivery time < 30 seconds

Minimizes the amount of drug lost during delivery May need additional supporting devices

Summary and Conclusions

- Given the prognostic importance of ISR, optimal treatment strategy should be carefully selected.
- Newer generation DES showed superior clinical efficacy compared with DEB, especially in terms of repeat revascularization
- However, DES and DEB showed equivalent clinical safety, with marginal benefit of DEB for the risk of ST
- In order to maximize DEB results, procedural factors especially perfect lesion preparation, total inflation time, and DEB-to-stent ratio are important